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Abstract

The evolution of large amplitude Tollmien-Schlichting waves in a supersonic

boundary layer is investigated. Disturbances which have their wavenumber and

frequency slowly varying in time and space are described using a phase equation

type of approach. Unlike the incompressible case we �nd that the initial bifurca-

tion to a �nite amplitude Tollmien-Schlichting wave is subcritical for most Mach

numbers. In fact the bifurcation is only supercritical for a small range of Mach

numbers and even then for only a �nite range of wave propagation angles. The

modulational instability of large amplitude wavetrains is considered and is shown

to be governed by an equation similar to Burgers equation but with the viscous

term replaced by a fractional derivative. A numerical investigation of the solution

of this equation is described. It is shown that uniform wavetrains are unstable.
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1 Introduction and triple-deck theory for compress-

ible 
ows

Consider the 
ow of a viscous compressible 
uid which has pressure, density and speed
p�1; �

�
1 and u�1 su�ciently far away from the semi-in�nite plate de�ned by y = 0, x � 0

with respect to a Cartesian coordinate system made dimensionless using the reference
length L. If the viscosity in the free stream is ��1 then we de�ne a Reynolds number R
by writing

R =
U�
1L

��1
; (1)

and throughout our investigation we assume R >> 1. We scale the velocity and tem-
perature of the 
ow near the wall on their free stream values and we assume a linear
viscosity temperature law which we write in the form

��

T �
=
C��1
T �1

=

 
��w
T �w

!
; (2)

where �� and T � are the viscosity and temperature whilst a subscript w denotes a quantity
evaluated at the wall. The basic boundary layer 
ow has smooth velocity temperature
and density pro�les (Stewartson [16]) and may be calculated routinely. Here we concern
ourselves with the large amplitude waves (induced by viscosity) which are known to occur
in such 
ows. A linear theory of Tollmien-Schlichting waves based on triple-deck theory
was �rst given by Smith [13] for incompressible 
ows. Subsequently Smith [15] developed
a linear stability for compressible 
ows and our concern here is with the development of
these Tollmien-Schlichting waves in a strongly nonlinear regime.

In order to describe the nonlinear evolution of Tollmien-Schlichting waves in a com-
pressible boundary layer we use triple-deck theory based on the work of Stewartson and
Williams [18] and Stewartson [16]. We introduce the small parameter � de�ned by

� = R�1=8 (3)

and look for a solution of the Navier Stokes equations for � << 1.
Suppose that (x; y; z) and (u; v; w) are dimensionless coordinates and velocities scaled

on L and u�1 respectively. In the triple-deck limit the 
ow responds on a short 0(�3)
lengthscale in the x direction and the lower deck must be taken to be of order �5 if viscous
and convective terms are to balance. The main deck is simply the region occupied by
the undisturbed boundary layer so that y = 0(�4) there. Finally the upper deck, where
the 
ow is a potential one, is de�ned by y = 0(�3). Since the streamwise lengthscale is
small we must con�ne our attention to some neighbourhood around the position where
instability �rst occurs. If this position corresponds to x = x then we de�ne triple-deck
variables X and Z by writing

[x� x]

J�3
= X;

z

J�3
= Z; (4a)

where

J =
C3=8(T �w=T

�
1)

3=2

(M2
1 � 1)3=8�5=4

: (4b)
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Here J is an 0(1) quantity and M1 is the free stream Mach number and � is the un-
perturbed skin friction at x = x. The variable Y is 0(1) in the lower deck and de�ned
by

Y =
y�3=4(M2

1 � 1)1=8

�5C5=8(T �w=T
�
1)

3=2
: (5)

In the main and upper decks the dimensionless variables ~Y ; Y are de�ned by

~Y =
y

�4C1=2(T �w=T
�
w)
; (6a)

Y =
y�5=4(M�

1 � 1)7=8

�3C3=8(T �w=T
�
1)

3=2
; (6b)

respectively. Note here that the 0(1) scaling factors have been introduced in order to
simplify the form of the triple-deck equations which we are now in a position to write
down.

Lower Deck Equations

Here u; v; w, p � p1 expand as

u = �C1=8(T �w=T
�
1)

1=2�1=4(M2
1 � 1)�1=8U + 0(�2);

v = �3C3=8(T �w=T
�
1)

1=2�3=4(M2
1 � 1)1=8V + 0(�4);

w = �C1=8(T �w=T
�
1)

1=2�1=4(M2
1 � 1)�1=8W + 0(�2);

p � p1 = �2C1=4�1=2(M2
1 � 1)�1=4P + 0(�3):

If we de�ne a dimensionless time variable t by

t =
t�u�1(M

2
1 � 1)1=4�3=2

L�2(T �w=T
�
1)C

1=4

then the zeroth order approximation to the Navier Stokes equations in the lower deck
yields 8>>><

>>>:
UX + VY +WZ = 0;

Ut + UUX + V UY +WUZ = �PX + UY Y ;

Wt + UWX + V VY +WWZ = �PZ +WY Y ;

PY = 0:

(7)

Thus the 
ow is determined by the 3D unsteady boundary layer equations in the lower
deck. Note also that the energy equation plays no role in the lower deck since the
temperature and density are uniform there, see for example Stewartson and Williams
(1969) for a discussion of this point.

At the wall we impose the condition

U = V = W = 0; Y = 0; (8)

whilst at the edge of the lower deck

U ! Y +A(X;Z; T );W ! 0: (9)
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The linear shear 
ow is of course the near-wall form of the unperturbed 
ow and A(X;Z; T )
is a displacement function coupled to the pressure by the appropriate pressure displace-
ment law obtained by solving the equations of motion in the main and upper decks.

Main Deck

This layer is relatively passive and transmits the displacement generated in the lower
deck to the region above the unperturbed boundary layer. Here u; v; w and p expand as

u = U0( ~Y ) + �C1=8(
T �w
T �1

)1=2(M2
1 � 1)�1=8��3=4AU 0

0( ~Y ) + 0(�2); (10a)

v = ��2C1=4�1=2(M2
1 � 1)1=4AXU0( ~Y ) + 0(�2); (10b)

w = �2C1=4�1=2(M2
1 � 1)�1=4

T �w
T �1

R0(0)Q

R0( ~Y )
U0( ~Y ) + 0(�3); (10c)

p � p0 = �2C1=4�1=2(M2
1 � 1)�1=4P (X;Z; t) + 0(�3); (10d)

together with similar displacement perturbations to the unperturbed temperature and
density. Note also that U0( ~Y ) and R0( ~Y ) are the unperturbed streamwise velocity and
density respectively whilst from the spanwise momentumequation the functionQ satis�es

QX = �PZ: (11)

Upper Deck

Here the 
ow is potential and may be obtained by writing

[u; v; w; p] = [1; 0; 0; p1] +
22 C1=4�1=2

(M2
1 � 1)1=4

[û; v̂(M2
1 � 1)1=4; ŵ; p̂] + 0(23);

and after some simpli�cation we obtain

(M2
1 � 1)(p̂XX � p̂Y Y )� p̂ZZ = 0;

p̂! 0; Y !1;

p̂! P;
@p̂

@Y
! @2A

@X2
as Y ! 0+:

(12)

The solution of (12) implies a pressure displacement law which we write symbolically in
the form

P = L(A): (13)

Thus the nonlinear problem speci�ed by (7), (8), (9), and (13) is now closed and of
course must be solved numerically unless some simpli�cation is made. Linear Tollmien-
Schlichting waves may be described, following [15], by perturbing about the unperturbed

ow U = Y . Thus in the lower deck we write for example

U = Y + eif�x+�z�
tg ~U (Y )
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and the frequency, and wavenumbers of the disturbance are found to satisfy the eigen
relation

(i�)
1

3 (�2 + �2) = (
A0
i(�0)

K(�0)
)(

�2

M2
1 � 1

� �2)
1

2 ; (14)

where �0 = �i� 1

3
��
2

3 ; Ai is the Airy function and

K =
Z 1

�0
Ai(q)dq:

The eigenrelation (14) can be solved for a complex wavenumber � for given values
of �;M1 and 
. The 
ow is unstable or stable depending on whether �i is negative or
positive. If we �x � and M1 we �nd that ��i increases from a negative value when

 increases from 0. The growth rate then changes sign at 
N , the neutral value of

, and then increases monotonically until 
 = 
M where the maximum growth rate
is achieved. Beyond 
 = 
M the growth rate can have further maxima of ��i but
ultimately asymptotes to 0 at large frequencies. Note however that the most unstable
wave always corresponds to the �rst maxima when d�i

a

= 0 and that ��i remains positive

for 
 >> 1. We can alternatively choose to keep � real and �nd the complex value of 
.
For weakly nonlinear Tollmien-Schlichting waves it has been shown by Smith [14] and

Hall and Smith [7] that nonlinear e�ects are stabilizing for both two and three dimensional
waves. For axisymmetric compressible 
ows Duck and Hall [3], [4] showed that nonlinear
e�ects are again stabilizing but we know of no results for planar compressible 
ows. The
analysis we shall give is appropriate to strongly nonlinear disturbances but in the small
amplitude limit of our theory we will be able to infer the role of nonlinear e�ects in
the weakly nonlinear regime. Strongly nonlinear waves are governed by the full triple
deck problem (7)-(8),(1.9), and (13). In general such disturbances must be described by
numericalmeans, here we shall investigate asymptotically large amplitude locally periodic
wavesystems.

2 The phase equation for large amplitude waves

The essential ideas of the approach we use can be found in Whitham [21] and were pre-
viously used by Hall [6] to discuss the two-dimensional incompressible case. We suppose
that a wavesystemmoves through the 
ow and that the local streamwise wavenumber and
the frequency of the waves vary slowly as the wavesystem moves downstream. Suppose
that the slow temporal and spatial variations of the wave occur over times and lengths
of relative size ��1 compared to the period and wavelength of the wave. We introduce
slow variable � and � by writing

� = �X; (15a)

� = �t; (15b)

where 0 < � << 1. In order to represent a locally periodic wavesystem we de�ne a phase
function � by writing

� =
1

�
�(�; � ) + �Z: (16)

Here � is a constant spanwise wavenumber and the streamwise wavenumber � and
the frequency 
 are then de�ned by

� = ��; 
 = ��� ; (17)
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so that � and 
 must satisfy the evolution equation

�� + 
� = 0: (18)

The frequency 
 = 
(�; �) may then be found in terms of an asymptotic expansion
involving � and in principle the evolution equation (18) can be solved to determine how �

varies in time and space. The de�nition (2.1)-(2.3) imply that in the triple-deck equations
we must use the transformations.

@

@X
! �

@

@�
+ �

@

@�
;
@

@t
!�
 @

@�
+ �

@

@�
;
@

@Z
! �

@

@�
:

The lower deck solution for y = 0(1)

We expand U; V; and W in the lower deck in the form

(U; V;W ) = (U0; V0;W0) + �
1

3 (U1; V1;W1) + . . . (19)

where U0; V0, etc. are functions of �;X; Y and � . In (19) we have anticipated that the

appropriate choice of expansion parameter is �
1

3 rather than �; the reason for this choice
will become clear when we investigate the form of the leading order terms in (2.5) in the
limit Y !1. The pressure is then expanded in the form

p = ��2=3PM (�; T ) + P0 + �1=3P1 + . . . (20)

where P0; P1, etc. are functions of �; �; Y and � whilst PM is an induced pressure again
implied by the form of (U0; V0;W0) for Y >> 1. The frequency then expands as


 = 
0 + �1=3
1 + . . . ;

The leading order approximation to (1.7) is then found to be

�U0� + V0Y + �W0� = 0
�
0U0� + �U0U0� + V0U0Y + �W0U0� = ��P0� + U0Y Y ;

�
0W0� + �U0W0� + V0W0Y + �W0W0� = ��P0� +W0Y Y ;

P0Y = 0;

(21)

and we seek a solution of these equations which is periodic in �. If the displacement
function A is expanded as

A = A0 + �1=3A1 + . . . (22)

then the conditions required to close the leading order problem are

U0 = V0 = W0 = 0; Y = 0;
U0 ! Y +A0; Y !1;

P0 = L(A0):
(23)

The partial di�erential system (2.7)-(2.9) speci�es a nonlinear eigenvalue problem for 
0

as a function of �; � and M1. We note that the disturbance size can then be changed
as a function of � and that solutions will only exist for certain values of �. Moreover it
follows that the slow dependence of (U0; V0;W0) and P0 on �; � arises only through the
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dependences of these functions on � and 
0. In order to solve (2.7)-(2.9) numerically it
is convenient to write

(U0; V0;W0; P0) = (U00; 0;W00; P00) +
1X

n=�1

n6=0

(U0n; V0n;W0n; P0;n)e
in� (24)

After a little algebra it is possible to show that the partial di�erential equation (2.7) can
be reduced to

V 0000
0n � inf�Y + �U00 + �W00 � 
0gV 00

0n + iV0nf�U00 + �W00g00 =X
m6=n

m6=0

n

n�m
fV 00

0n�mV0m � V 0
0n�mV

0
0mg (25)

for n = �1;�2; . . .,

�U 00
00 + �W 00

00 =
X
m6=0

i

m
fV 0mV

0
0m � VomV

0
0mg0; (26)

U00 = W00 = V0n = V 0
0n = 0; n = �1;�2; . . . ; Y = 0; (27)

V 00
0n = U 0

00 = W 0
00 = 0; Y !1:

V 000
0n(0) =

in�(�2 + �2)V 0
0n(1)�

�2

M2
1
�1 � �2

�1=2 : (28)

The last equation is obtained by projecting (1.13) into Fourier space and relating V 0
0n(1); P0n

to the corresponding displacement function Fourier component (through continuity) and
U 00
0n;W

00
0n at the wall respectively. Of particular importance is the fact that the mean 
ow

correction terms only appear in the leading order nonlinear eigenrelation in the combi-
nation �U00 + �W00 so that we do not need to solve for U00 and W00 independently. In
addition we see that the mean 
ow functions tend to constants at the edge of the lower
deck. We write

U00 ! A00;W00 ! B00; Y !1; (29)

and note that A00; B00 must in fact depend on the slow variables � and � through the
dependence of these quantities on �. This is a crucial result because it means that the
mean 
ow correction has an outer layer structure where Y � @

@�
� @2

@Y 2 . The outer layer

is therefore of depth �1=3 and it is for that reason that our lower deck expansions were
previously taken to be in powers of �1=3 rather than �. We point out at this stage that the
functions U00; V0n;W0n; P0n; n 6= 0 do not develop such an outer layer structure because
they possess a fast dependence on X through the phase function �.

Before we discuss the solution in the outer �1=3 boundary layer it is convenient to
write down the order �1=3 approximation in the Y = 0(1) part of the lower deck. The
appropriate di�erential equations are found to be
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�U1� + V1Y + �W1� = 0; (30a)

�
0U1� + �fU0U1� + U1U0�g+ V0U1Y + V1U0Y +

�fW0U1� +W1U0�g+ �P1� � U1Y Y = 
1U0�; (30b)

�
0W1� + �fU0W1� + U1W0�g+ V1W0Y + V0W1Y +

�fW0W1� +W1W0�g+ �P1� �W1Y Y = 
1W0�; (30c)

P1Y = 0: (30d)

The main point to notice here is that (U1; V1;W1; P1) =
@
@�
(U0; V0;W0; P0) is a solution of

the homogeneous form of these equations. This is because of the invariance of the 0(1)
solution to a Galilean transformation in the X direction. The inhomogeneous form of
(2.16) is to be solved subject to

U1 = V1 = W1 = 0; Y = 0; (31a)

P1 = L(A1): (31b)

and a condition on U1(Y =1) obtained by a consideration of the outer boundary layer.
The condition that the resulting partial di�erential system should have a solution will
determine 
1 as a function of �. This enables us to write down the approximation to the
phase equation (18) correct upto order �1=3. In the absence of the outer layer we would
write down the conditions U1 ! A1;W1 ! 0; Y ! 1. However the required conditions
can only be written down once the solution in the 0(�1=3) di�usion layer has been found.

The di�usion layer

The dominant balance in this layer is between di�usion in the Y direction and convection
in the X direction. The thickness of the layer is governed by the balance U @

@X
� @2

@Y 2

and since U � Y for Y >> 1, and @
@X

� 0(�) is follows that the required layer has
Y � 0(��1=3) so we introduce � de�ned by

� = �1=3Y:

We now expand U; V;W and P in the form

U = f��1=3� + UM (�) + 0(�1=3g+
h
Û0 + �1=3Û1 + 0(�2=3)

i
; (32a)

V = f�2=3VM (�) + 0(�)g+
h
V̂0 + �1=3V̂1 + 0(�2=3)

i
�1=3; (32b)

W = fWM(�) + 0(�1=3)g+
h
Ŵ0 + �1=3Ŵ1 + 0(�2=3)

i
�1=3; (32c)

P = f��1=3PM + 0(1)+g +
h
P0 + �1=3P1 + 0(�2=3)

i
: (32d)

In the above expansions the terms in the curly and square brackets correspond to mean

ow correction terms and the wavelike part of the disturbance 
ow respectively. If we
substitute the above expansions into the rescaled form of the lower deck equations and
match with the solution in the Y = 0(1) region it is easy to show that

Û0 = A0 �A00; V̂0 = �A0���:
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The mean 
ow functions UM ; VM ;WM are determined by the solution of

�UM� + VM = �PM� + UM��;

UM� + VM� = 0;
UM = A00; � = 0;
UM ! AM(�); � !1;

PM = L(AM);

9>>>>>>=
>>>>>>;

(33)

and
�WM� =WM��;

WM = B00; � = 0;
WM ! 0; � !1:

9>=
>; (34)

These systems are most easily solved by taking a Fourier transform with respect to �
and indeed (33) has been solved previously in the context of linearized triple deck theory
by Stewartson [17] and Smith [12]. For our purposes here we only need the quantities
UM�;WM� evaluated at � = 0. We obtain

U 0
M(0) = J1(�; � ) = �3Ai(0)

2�

Z 1

�1
S(� � �)A0

00(�)d�;

W 0
M (0) = J2(�; � ) =

s
3

2�

1

31=3
1

Ai(0)

Z �

�1

1

(� � �)1=3
B0
00(�)d�; (35)

where

S(�) =
Z 1

0

 4=3(1 +  1=3)e�� 

1 +  4=3 +  8=3
d ; � > 0;

S(�) =
3�

2
p
2�
e��; � < 0

with
� = �3A0

i(0):

The functions Û1; V̂1 and Ŵ1 are then found in terms of UM and WM . We obtain

V̂1 = ��A0�UM � �A0�WM � �Q0�; (36)

�U1 + �W1 = (A0 �A00)(�U
0
M + �W 0

M) +Q0�: (37)

where Q0 is to be determined by matching with the main deck solutions. When � !1,
U 0
M ;W

0
M ! 0 so that Q0 = A1.

It remains for us to match (2.22), (2.23) with the solution in the Y = 0(1) part of the
lower deck. In the �rst instance we note that UM � J1�;WM � J2� for small � so it is
convenient to write

U1 = ~U1 + J1�;W1 = ~W1 + J2�;

in (2.16) to give
� ~U1� + ~V1Y + � ~W1� = 0;

�
0
~U1� + �(U0 ~U1� + ~U1U0�) + V0 ~U1Y + ~V1U0Y + �(W0

~U1� + ~W1U0�)

+�P1� � ~U1Y Y = 
1U0� � �J1�U0� � V0J1 � �J2�U0�

�
0
~W1� + �(U0 ~W1� + ~U1W0�) + V1U0Y + V0W1Y

8



+ �fW0
~W1� + ~W1W00g+ �P1� �W1Y Y (38)

= 
1W0� � ��J1W0� � V0J2 � �J2�W0�:

The conditions required to completely specify the problem for ( ~U1; V1; ~W1; P1): are then
found to be

~U1 = ~W1 = V1 = 0; V = 0;

P1 = L(A1);

� �A1 + � ~U1 + � ~W1 ! (A0 �A00)(�J1 + �J2); Y !1: (39)

Suppose that we set all the right hand sides in (2.24) equal to zero and replace the above
condition by � ~U1 + � ~W1 ! �A1, Y !1. The simpli�ed homogeneous system obtained
by this procedure has the solution

( ~U1; V1; ~W1; P1) = (U0; V0; ~W0; P0)�

so that (38), (39) only has a solution if the appropriate solvability condition is satis�ed.
The condition is most easily obtained by expressing (38) as a system of equations in the
form

@

@Y
(�; V1; �Y ; P1)

T = B(�; V1; �Y ; P1)
T + C(�; V1; �Y ; P1)

T
� +G;

where, � = � ~U1 + � ~W1, B;C are 4� 4 matrices and G is a column vector with elements
proportional to �J1 + �J2. The partial di�erential system adjoint to the homogeneous
form of the above system is obtained by multiplying by a vector and integrating over
0 < Y <1, 0 < � < 2�

�
. Full details are given in [6] and after some analysis we obtain


1 = K(�)(�J1 + �J2) (40)

where K(�) may be expressed in terms of integrals involving the adjoint and the 0(1)
lower deck solution.

Having determined 
1 we can now write down the partial di�erential equation to
determine � correct to 0(�1=3). We write

@�

@�
+ 
00(�)

@�

@�
+ �1=3 fK(�)(�J1 + �J2)g� = 0: (24)

If � is then speci�ed at � = 0 we can integrate (24) forward in time to determine the
evolution of �.

3 The modulational instability of uniform wavetrains

It can be seen from (24) that a particular solution of the wavenumber evolution equation
is

� = �0

where �0 is a constant so that the wavenumber and frequency of the wave remain constant
as it propagates downstream. In order to investigate the modulational instability of the
uniform wavetrain we write

� = �0 +�
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with j �
�0
j << 1. It follows from (24) that � satis�es

@�

@�
+
h

00(�0) + �
000(�0) + 0(�2)

i @�
@�

+ �1=3K(�0)
@

@�

h
�0Ĵ1 + �Ĵ2

i
= 0(�1=3�2):

Here J1 and J2 are de�ned by

Ĵ1 = �3A(i(0)

2�
A0
00(�0)

Z 1

�1
S(� � �)

@�

@�
d�;

Ĵ2 =

s
3

2�

1

31=3
B0
00(�0)

Ai(0)

Z �

�1

@�

@�

1

(� � �)1=3
d�:

By a suitable transformation we can eliminate the term in the wavenumber evolution
equation proportional to 
00(�0). If we then introduce a scaled time variable Y � �1=3� ,
and amplitude � � 0(��1=3)� then we see that the canonical form for the evolution
equation is

@�

@T
+ �

@�

@�
= � @

@�

Z 1

�1

@�

@�

(
H(� � �)

(� � �)1=3
+ 
S(� � �)

)
d� (25)

Here H is the Heaviside function and 
 is de�ned by

1



= ��0B

0
00(�0)

�0A
0
00(�0)

p
2�

31=6
1

A2
i (0)

: (26)

Calculations show that
B0
00

A0
00

is always negative so that 
 is a positive constant. Finally

the � sign in (25) are to be taken depending on whether B 0
00(�0)K(�0) is positive or

negative. Computations which we shall report on in the next section show that both
possibilities occur.

In the absence of the viscous like terms on the right hand side of (25) we see that
� satis�es the inviscid Burgers equation which for rather arbitrary initial data will de-
velop shocklike solutions. The viscous terms will then become important in such rapidly
varying regions. The kernel function S appearing in (25) can then be simpli�ed using its
asymptotic form for small argument. Thus using the result

S(�) � 1

�1=3
T (1=3)��1=3+; 0 < � << 1;

S � 3�

2
p
2�
; � < 0;

we deduce that a rescaled form of (25) is

@�

@T
+ �

@�

@�
= � @

@�

Z �

�1

@�

@�

1

(� � �)1=3
d� (27)

and we shall now concentrate our attention on this equation.
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4 Numerical solution of the 0(1) problem

Here we discuss the results we have obtained for the solution of the nonlinear eigenvalue
problem 
0 � 
0(�; �;M1) associated with the 3D periodic triple deck problem (2.7)-
(2.9). The calculations were carried out using a �nite di�erence method in the Y direction
and a Fourier spectral method in the � direction. The nonlinear terms were accounted for
by an iterative process with only the linear terms evaluated at the new level of iteration.
We restricted our attention to three Mach numbers,M1 = 1:1; 1:25; 1:5. Figure 1 shows
the dependence of � on � for the linear neutral modes at these Mach numbers. The
corresponding frequencies are shown in Figure 2.

Figures 3-5 show a variety of 
0 � � plots for three di�erent values of M1 and a
selection of spanwise wavenumbers. The circle shown in the �gures corresponds to the
linear neutral point in 
0 � �0 space. Thus one end of each of the curves connects the
zero amplitude state with an initially small amplitude wave whilst the other end of each
curve represents the points at which our iteration procedure failed to converge. In each
case we used 32 modes in the periodic variable �, 400 in the normal direction and in�nity
was taken to be 15. At the point on each curve where the iteration procedure failed to
converge we calculated the wall shear stress but there was no sign of it changing sign.
We have no explanation why our iteration procedure could not be continued further and
it is possible that, as was found in [6] for the incompressible case, the Fourier expansion
procedure fails to converge at this stage and the disturbance develops a singularity.

Figures 3a-i show results at a Mach number 1.1. At moderate wavenumbers, Figures
3c-g, we see that there is a supercritical bifurcation to a �nite amplitude state at the
linear neutral point. This is similar to the situation discussed for subsonic 
ow by Hall
(1995). However in Figures 3b,h we see that in the weakly nonlinear limit the wavenumber
initially decreases as the amplitude increases. Since the frequency initially increases
in this regime the bifurcation remains a supercritical one with the bifurcating solution
temporally stable. However for su�ciently small or large wavenumbers, Figures 3a,i,
we �nd that both the frequency and wavenumber decrease with increasing disturbance
amplitude in the weakly nonlinear limit. Thus the bifurcation is now subcritical and
nonlinear e�ects are destabilizing.

Thus all disturbances apart from those with su�ciently small or large spanwise
wavenumber bifurcate supercritically. The modes with moderate spanwise wavenumber
bifurcate subcritically.

In Figures 4a-f we show results for a Mach number 1.25. The results are similar
to those described previously for M1 = 1:1. However we see that the supercritical
behaviour is now restricted to a smaller band of spanwise wavenumbers. If the Mach
number is further increased we ultimately reach a stage where the bifurcation is always
subcritical; see Figures 5a-e.

Finally it remains here for us to discuss the sign of the constant B 0
00(�0)K(�0) which

in e�ect determines whether the viscous-like derivative appearing on the right hand side
of (3.1) is stabilizing or destabilizing. We recall that in in the subsonic case it was found
in [6] that viscous e�ects were always found to be destabilizing so that the negative sign
in (3.1) was to be taken. In the present problem we found a similar result for every
case when the initial bifurcation has both frequency and wavenumber increasing with
the disturbance amplitude. In every other case we computed we found that viscous
e�ects were stabilizing if the equilibrium value of � initially decreased with disturbance
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amplitude. Thus it is necessary for us to discuss the solutions of (3.1), or in fact more
appropriately (3.3), for both cases.

5 Numerical solution of the phase equations

In this Section we are concerned with the numerical solution of the canonical phase
equation (3.3). The integral term on the right hand side is a fractional derivative of order
4
3
and is most easily dealt with in Fourier space. A fractional derivative of order p is

de�ned by

@p�

@�p
� 1

�(1 � p)

Z �

�1

@�
@�

(� � �)p
d�:

For a discussion of fractional calculus the reader is referred to [10]. The Fourier transform
gives

F
 
@p�

@�p

!
= (ik)pF(�);

where F(u) = R1
�1 ue�ik�d�. According to a rescaling of � similar to that of Section 3,

the canonical equation (3.3) is cast into the form

ut + uux = �� @
4=3u

@x4=3
;

(x; t) 2 R1 �R+; (28)

u(x; 0) = u0(x); u(x+ 2�; t) = u(x; t):

Here � > 0 and can be re-scaled to unity by changing the initial condition, for instance.
The boundary conditions in (5.1) indicate that we are considering the spatially periodic
problem since our main interest lies in the prediction of local structures such as �nite-time
in�nite slope singularities, for example. Equations containing fractional derivatives have
been derived and studied by other authors in the context of boundary layer stability, [1],
and nonlinear acoustic waves, [19]. The former work derives an equation with negative
di�usion and a 1

2
spatial derivative, while the latter study considers a positive di�usion

and a fractional derivative of 1
3
together with the usual stabilizing Burgers di�usion

(second spatial derivative and positive di�usion). The former authors conjecture and
formally analyze the formation of a \shock" singularity driven by the inviscid Burgers
equation, to leading order. Our numerical results for the present problem lend support
to such breakups. The analysis and numerical experiments in [19] do not produce shocks
due to the presence of the stabilizing second derivative term; this is brought into the
evolution as a higher order correction once a shock begins to form. In the present problem
a hierarchy of higher derivatives enter simultaneously and consequently the evolution in
the \inner" region is governed by the full unsteady triple deck problem which is hard to
analyze in order to obtain jump conditions, for instance.

A linearization of (5.1) leads to normal mode solutions

u = Ae��(ik)
4=3t + c:c = Ae��(1=2)(�1+i

p
3)k4=3t + c:c:; (29)

where c:c: denotes complex conjugate. We see from (5.2), therefore, that the system is
linearly stable or unstable respectively, depending on the sign chosen. The linearly stable
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case provides a nonlinear evolution problem which can be compared with the viscous
Burgers equation. There are two essential di�erences, however: First the amount of dif-
fusion is less (for large k it is of order k4=3 as opposed to k2 for the Burgers equation), and
second, the linear solution contains a dispersive part in contrast to the purely di�usive
nature of the linearized viscous Burgers equation. The latter fact requires some care in
the numerical treatment described later. The main question we address numerically is
whether the dissipation in the present problem is su�cient to prevent in�nite slope singu-
larities - the numerical evidence suggests that shocks do tend to form. The situation with
the negative sign in (5.1) is worse in that the problem is now ill-posed and solutions may
exist for small enough times if the initial conditions are chosen appropriately. This class
of numerical experiment also suggests the generic formation of in�nite slope singularities
or \shocks".

The numerical scheme used is a pseudospectral one which allows a straightforward
representation of the fractional derivative. All derivatives are computed by a forward
Fast Fourier Transform (FFT) along with the appropriate inverse FFT, and the time-
marching is done in real space by an adaptive second or third order accurate scheme. In
order to monitor the accuracy of the solution as the computation evolves, we utilized the
conserved quantity

@

@t

�Z 2�

0
u(x; t)dx

�
= 0: (30)

Most numerical experiments have initial condition u0(x) = sin(x) and so
R 2�
0 u(x; t)dx = 0

throughout the evolution. All results reported here satisfy (5.3) to within computer
round-o� errors. Before presenting numerical results we mention some accuracy require-
ments of the numerical schemes. In view of the linear solution (5.2), it is seen that when
the kth Fourier component is stepped forward in time by an amount �t (according to a
time-split scheme for instance - this is a useful simpli�cation to get an estimate of the
accuracy requirements) the solution due to the linear operator is given by

ûk(t+�t) = e��(1=2)(�1+i
p
3)k4=3�tûk(t): (31)

If a computation is performed with n modes, then the maximumavailable Fourier compo-
nent is kmax =

n
2
(in practice kmax is smaller than n=2 due to �ltering); the complex part in

the exponential in (5.3) causes a rotation which will be spurious unless � = 1
2

p
3�k4=3max�t

is small enough. This places a restriction on the value of �t. All runs reported here have
� < 0:1, and it is seen that the step size needs to be decreased as the resolution increases.

The �rst set of results presented below have � = 0:1 and an initial condition u0(x) =
sin(x). All numerical experiments terminate in in�nite slope singularities after a �nite
time and so a \shock" is seen to form then. The maximum absolute value of the slope
that can be computed accurately depends on the spatial resolution and it was found
that an ampli�cation in max(juxj) of over 80 is possible to achieve accurately with 4096
modes. Numerical convergence has also been established by a comparison between this
run and a lower resolution run. Unless otherwise stated the results shown in the following
�gures have been computed with n = 4096.

Figure 6(a) shows the evolution of u(x; t) and Figure 6(b) depicts the �nal computed
pro�le. The maximum value of the magnitude of the slope is 80:03 by the end of the
computation, and it occurs at t = 1:246. It is seen that the solution steepens up as the
computation evolves and due to the dispersive part of the pseudo-di�erential operator
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the position of maximum juxj is not constant but varies slightly. Next we consider the
evolution of the maximum magnitude of ux in Figure 7 which again indicates that the
slope is blowing up after a �nite time. We note that the initial value of this quantity is
1 and by the end of the computation a magni�cation factor of 100 has taken place. The
energy of the solution de�ned as

R 2�
0 u2(x; t)dx remains bounded as t increases and in fact

decreases monotonically; this is shown in Figure 8.
Further quantitative information about the suggested singularity can be obtained by

considering the evolution in time of the spectral amplitude of the solution. Given a
time t, say, the discrete Fourier transform of u is computed and is denoted by ûk for
k = �n

2
; . . . ; n

2
; it is su�cient to consider those spectral components with positive k

(note that the component corresponding to k = 0 is zero due to the conservation of the
integral of u) since u(x; t) is a real function and so the sequence fûkg is Hermitian, i.e.
û�k = û�k where * denotes complex conjugate. We de�ne a spectral amplitude, therefore,
at a given time t by

S(k; t) = jûk(t)j; k = 1; . . . ;
n

2
� 1:

In Figures 9 and 10 we depict S(k; t) versus k and ln(S(k; t)) versus ln(k) at di�erent
times. The times correspond exactly to the times at which the pro�les in Figure 5 are
shown and are therefore the spectral amplitude characteristics of those pro�les. In both
Figures 9 and 10 as time increases the spectral amplitude increases upwards. In order
to capture the behavior of the spectrum for large k we follow [20] and assume that the
spectrum has the following behavior for large k,

ûk(t) = c(t)k��(t)e��(t)k: (32)

The form (5.5) is suggested by the large k behavior of the Fourier transform of an ana-
lytic function with isolated singularities in the complex plane. The dominant behavior
contained in (5.5) comes from the singularity in the upper half-plane nearest to the real
axis which is not a multiple pole (for details see [20] and [2]). We used the results of
Figures 9 and 10 to estimate the parameters in (5.5) as the computation evolved towards
a singularity. We note that �(t) decreases to zero as the singularity is approached and the
computation is inaccurate once the value of � becomes smaller than the mesh size (this
accuracy requirement is observed by all the results given here). We used least squares
�ts to estimate �(t) and �(t). It follows from (5.5) that

ln jûkj = ��(t) ln(k) � k�(t) +D(t); (33)

where, for notational convenience, � and � in (5.6) are real numbers which correspond
to their respective real parts in (5.5). It follows from (5.6) that log-linear and log-log
plots will provide estimates for �(t) and �(t) respectively. The former evolution can be
found in Figure 9 and the latter in Figure 10. The results for our estimates are given
in Figure 11 and summarized in Tables 1 and 2 which contain additional information on
the modes retained for the �t. The spacing between grid points for 4096 modes is 0:0015
and is larger than the minimum value of � reached by the end of the computation. The
numerical results can be used to conjecture the terminal form of the solution. It appears
that the dominant structure is that provided by the inviscid Burgers breakdown - the
inviscid Burgers has a power law dependence of � = 4=3 due to the local x1=3 behavior
in the neighborhood of the singularity. At times above t = 1:24 a power law of 1:33 is
achieved suggesting that it is the inviscid Burgers mechanism which is controlling the
local structure of the singularity.
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t � Modes retained for �t
0.7 3.03 2 � k � 8
.8 2.61 2 � k � 10
.9 2.38 2 � k � 20
1.0 2.06 5 � k � 30
1.1 1.76 10 � k � 60
1.2 1.42 10 � k � 100
1.21 1.39 10 � k � 100
1.22 1.37 10 � k � 100
1.23 1.35 10 � k � 100
1.24 1.33 10 � k � 100
1.246 1.33 10 � k � 100

Table 1

t � Modes retained for �t
0.7 0.377 30 � k � 70
.8 0.168 40 � k � 150
.9 0.099 50 � k � 250
1.0 0.051 50 � k � 490
1.1 0.021 500 � k � 1150
1.2 0.0082 1000 � k � 2000
1.21 0.0076 1000 � k � 2000
1.22 0.0071 800 � k � 1800
1.23 0.0067 800 � k � 1800
1.24 0.0063 800 � k � 1800
1.246 0.0060 800 � k � 1800

Table 2

Another quantity which provides positive evidence of an inviscid Burgers breakdown
is given by the enstrophy of the solution de�ned by

2E(t) =
Z 2�

0
u2xdx: (34)

The evolution of E(t) corresponding to the runs described above is given in Figure 12. In
order to make a comparison with the inviscid Burgers analogue, it is useful to give the
solution then, corresponding to � = 0. Using characteristic coordinates an implicit form
of the solution is (see [9])

u(t; x(t; s)) = u0(s);

x(t; s) = s+ tu0(s):

The slope ux follows from these results and is

ux =
u00(s)

1 + tu00(s)
;

15



showing that an in�nite slope singularity is encountered after a �nite time given by

T =
1

�Inf [u00(s)]
:

An estimate of the rate at which E(t) blows up as the singular time is approached is best
achieved by using Lagrangian coordinates; this is described in [5] and we simply sketch
the result. In Lagrangian coordinates the enstrophy is

2E(t) =
Z 2�

0

(u00(s))
2

1 + tu00(s)
da:

If the singular time is t�, then it follows from a local expansion of u0 near s = 0 (without
loss of generality the singularity is taken to occur here) that

u00(s) = � 1

t�
+
1

2
u0000 (0)s

2 +O(s3);

which on insertion into (5.7) and retainment of the leading order term as t! t��, gives

E(t) � (t� � t)�
1

2 ; t! t� � : (35)

The local x1=3 structure of u near the singular time also follows from the Lagrangian
formulation (see [5] for more details). The results given above are valid for the inviscid
Burgers equation and in general the singular time t� is di�erent from that of (5.1) denoted
by ts.

In what follows, then, we show that our numerical results with � 6= 0 are consistent
with the asymptotic blowup rate (5.8). Referring to Figure 12 we see that E is becoming
singular after a �nite time; the value of ts is not provided directly by the computations,
and in order to check the algebraic rate (5.8) it is necessary know the value of ts. In the
absence of a rigorous way of obtaining ts we proceed as follows: reasonable guesses are
made for ts, consistent with the data in Figure 12, and plots of ln(E(t)) versus ln(ts � t)
are generated (for brevity we do not include those plots here). If a power law behavior is
present for small values of (ts � t), then the plots above are linear with the slope giving
an estimate of the power. Least squares �ts were applied for a range 1:226 � t � 1:246 (a
typical corresponding range in the log-log plots is [�2:9;�2:59]) to gain an estimate of the
power law for comparison with (5.8) which has a power law behavior of �1

2
. The results

are given in Table 3 below. The numerical values are consistent with those predicted by
the local analysis providing additional evidence that it is the singularity formation of the
inviscid Burgers equation which is dictating the singularity structure.

ts 1.29 1.3 1.301 1.3025 1.305 1.31
slope -0.41 -0.49 -0.50 -0.51 -0.53 -0.57

Table 3

5.1 Negative di�usion case

In this section we consider the evolution when the \di�usion" is negative and the minus
sign is in e�ect in equation (5.1). In view of the linearized solution (5.4) the problem
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now contains a short wave instability with growth of the order exp(k4=3t); we note that
this is worse than the well-known Kelvin-Helmholtz instability whose nonlinear evolu-
tion has been treated numerically by [8], for example. Due to the short wave instability,
numerical round-o� errors are viewed by the system as low amplitude high wavenumber
perturbations; the shorter the wavelength the faster the initial (exponential) growth will
be and unless such perturbations are removed their eventual growth and nonlinear inter-
actions contaminate the 
ow and produce a spurious numerical solution. This problem
is overcome numerically by �ltering out (setting to zero) any Fourier coe�cient below a
certain tolerance level; we use the same �lter for all wavenumbers in much the same way
as was done in [8] for Kelvin-Helmholtz instability and in [11] for a system with a worse
dispersion relation than Kelvin-Helmholtz 
ow. This �ltering technique was also applied
to the positive di�usion case described earlier.

The presence of the short-wave instability, then, means that nonlinear solutions will
exist for small enough times if the initial conditions are chosen appropriately. To illustrate
this consider the evolution equation with the bad sign

ut + uux = �� @
4=3u

@x4=3
; � > 0: (36)

Given an initial condition at t = t0, say, a backwards integration in time is well-posed,
to times prior to any singularity encounter at least (care is required since the positive
di�usion case can encounter an in�nite slope singularity if the solution is evolved long
enough), since the di�usive e�ect appears positive then. Initial conditions which satisfy
(5.9) can thus be generated. Typically we integrated (5.9) from an initial condition u0(x)
at t0, to t = 0 and there switched to a forward time integration. In the numerical results
described below, we have t0 = 0:05 and u0 = sin(x). The number of modes used is 4096
and the �lter level is set at 10�12.

The evolution from t = 0 to t = 0:91 is given in Figure 13. Pro�les are plotted
every 0:05 time units and the pro�le at t = 0:91 is included also. Again we see that
the solution is steepening and an in�nite slope singularity appears after a �nite time;
the minimum slope at t = 0:91 is approximately �20. In addition, the maximum (or
minimum) of the solution increases with time as opposed to the behavior for positive
� described previously. In fact the energy of the solution increases monotonically now,
as expected. These features of the evolution are given in Figure 14 which depicts the
evolution with time of the maximum of juxj, the enstrophy (de�ned earlier) and the
energy. These results strongly suggest that the numerical solution is encountering an
in�nite slope singularity after a �nite time. We have also checked the power law (5.8) for
the enstrophy with favorable results; it is found that a singular time between 0:93 and
0:94 gives the power law (5.8) for our numerical data of Figure 13. We also note that
the numerical solution becomes unstable soon after t = 0:91; in particular we were not
able to achieve, with desirable accuracy, the minimum slopes of �80 or less which were
achieved for positive di�usion.

Finally we consider the evolution of the spectra of the solution. As before, we present
log-linear and log-log plots analogous to those of Figures 9 and 10. Results are plotted at
time intervals of 0:05 for 0 � t � 0:65 and at intervals of 0:005 for 0:65 < t � 0:91. The
reason for this re�nement is due to the rapid change of the spectrum as the singularity
is approached. The log-linear plots are given in Figure 15 and the corresponding log-log
ones in Figure 16.
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As can be seen from Figures 15 and 16 there are some di�erent features in the spec-
trum from that corresponding to positive di�usion. In particular an oscillatory behavior
appears at large wavenumbers and a kink in the spectrum is clearly seen at a time just
below 0:91. Such features were absent in the positive di�usion case and can be explained
by the in
uence of higher singularities moving down in the complex plane towards the
real axis; the interaction of several such singularities can produce oscillatory behavior in
the spectrum at large k. For an explicit example of this the reader is referred to the text
[2] (p. 256). We also tried to estimate the power law behavior of the spectrum in order
to compare with the positive di�usion results. Such an estimate can be derived from the
data of Figure 16 by the same techniques described previously. It has been found that for
the times up to which the integration has been carried out, the best estimate of the slope
coming from intermediate values of ln(k) in Figure 16, is approximately �1:78; this is
approximately 25% di�erent from the estimate found earlier and for the inviscid Burgers
behavior. The solution su�ers from short wave instabilities immediately after t = 0:91
(these can be seen creeping in at the largest values of k already) and it is possible that a
k-dependent �lter can increase the time of integration and allow further convergence in
the power law estimate. We emphasize, however, that the estimate �1:78 is a consistent
transient with the inviscid Burgers singularity and further careful numerical experiments
are required to verify this.

6 Conclusion

We have investigated in detail the solution of the modulation equation for large amplitude
waves in a compressible boundary layer. The equation in question, (3.3), was solved for
the cases of both negative and positive di�usion. The evolution equation describes the
evolution of a wavenumber perturbation to a uniform wavetrain. In both cases we found
that with periodic initial data the solution breaks down and a singularity forms. After
the onset of the singularity the full triple deck problem must be solved. However our
results show that large amplitude waves in supersonic 
ows cannot persist with constant
wavenumber and frequency.
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FIGURES

� Figure 1 The dependence of the neutral linear wavenumber � on the spanwise
wavenumber � for M1 = 1:1; 1:25; 1:5:

� Figure 2 The dependence of the neutral linear frequency 
0 on the spanwise
wavenumber � for M1 = 1:1; 1:25; 1:5:

� Figures 3a-i The dependence of 
0 on � for the nonlinear states with M1 = 1:1
and � = :1; :2; :4; :6; :8; 1:; 1:2; 2:6; 3:0.

� Figures 4a-f The dependence of 
0 on � for the nonlinear states with M1 = 1:25
and � = :4; :6; :8; 1:; 1:2; 1:8.

� Figures 5a-e The dependence of 
0 on � for the nonlinear states with M1 = 1:5
and � = :4; :6; :8; 1:; 1:2.

� Figure 6 (a) Run 1. Evolution of u(x; t): Positive di�usion case � = 0:1, initial
condition u0(x) = sin(x), 4096 modes used; pro�les shown every 0:1 time units. (b)
Final computed pro�le at t = 1:246; minimum slope is �80:03.

� Figure 7 Evolution of the maximum of juxj for Run 1.

� Figure 8 Evolution of the energy,
R 2�
0 u2(x; t)dx, for Run 1.

� Figure 9 Evolution of spectral amplitudes. Log-linear plots corresponding to Run
1. The �lter level is set at 10�12.

� Figure 10 Evolution of spectral amplitudes. Log-log plots corresponding to Run
1.

� Figure 11 (a) Evolution of the power law estimate of the spectrum; (b) evolution
of the logarithmic decrement. Both for Run 1.

� Figure 12 Evolution of the enstrophy,
R 2�
0 u2x(x; t)dx, corresponding to Run 1.

� Figure 13 Run 2. Evolution of u(x; t): Negative di�usion case � = �0:1; initial
condition obtained by integrating u0(x) = sin(x) backwards in time; pro�les are
plotted every 0:05 time units and the �nal pro�le at t = 0:91 is also included.

� Figure 14 Run 2. Evolution with time of (a) maxjuxj, (b) the enstrophy, and, (c)
the energy.

� Figure 15 Evolution of spectral amplitudes. Log-linear plots corresponding to Run
2. The �lter level is set at 10�12.

� Figure 16 Evolution of spectral amplitudes. Log-log plots corresponding to Run
2.
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